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ABSTRACT

Several two-equation models have been proposed and tested against benchmark flows by

various researchers. For each study, different numerical methods or codes were used to

obtain the results which were reported to be art improvement over other models. However,

these comparisons may be overshadowed by the different numerical schemes used to obtain

the results. With this in mind, several existing two-equation turbulence models, including

k - e, k - 7, k - w and q - w models, are implemented into a common flow solver code

for near wall turbulent flows. Calculations were carried out for low Reynolds number,

two-dimensional, fully developed channel and boundary layer flows. The quality of each

model is based on several criterion including robustness and accuracy of predicting the

turbulent quantities.

1. INTRODUCTION

The time averaged Navier-Stokes equations have more unknowns than the number of

equations. In order to solve this closure problem, it is necessary to model the tt_rbu-

lent stress tensor, uiuj, which appears in the time averaged momentum equation. Many

semi-empirical models have been proposed, each with its own successes and flaws. The

two-equation model is one of the more popular approaches. In this model, one equation

related to the turbulent kinetic energy and one related to the turbulence length scale are

solved along with the time averaged Navier-Stokes equations.

This paper summarizes two-equation turbulence models (including recently developed

models) and compares the robustness and accuracy of different models which have ap-

peared in the literature. For each model, calculations were carried out for two-dimensional,

fully developed channel and flat plate boundary layer flows. These flows are appealing for

model testing because they are simple and self-similar, yet demonstrate important features

of wall bounded turbulent shear flows. In addition, we can compare the results from these

calculations with Direct Numerical Simulations (DNS).

There were four types of two-equation models tested in this study:

1)
2) k-w
3) q-w

4) k-r

where,



k = Turbulent Kinetic Energy,
q-- x/_,
e = Dissipation Rate,
w cx e/k = Specific Dissipation Rate,

7 oc k/e = Turbulent Time Scale

A list of the models which were tested are shown in the table below:

Ch

Sh

LB

NH

NT

Chien I 1982

Shih aa 1991

Lain and Bremhorst 6 1981

Nagano and Hishida 9 1987

Nagano and Tagawa 1° 1990

]¢--C

]g--E

]¢--C

LS Launder and Sharma r 1974 k - e

JL Jones and Launder a 1973 k - e
MK

YS

WI1

WI2

SAA

Co

Myong and Kasagi s 1988 k - e

Yang and Shih lr 1991 k - e

Wilcox 15 1984 k - w

Wilcox a6 1991 k -

Speziale, Abid and Anderson TM 1990 k - r

Coakley 2 1983 q -

The time averaged momentum and continuity equations are written as:

OUi
--' _ 0

Oxi

DUi 0 (uOUi.
Dt - Oxi -_T,xi)-

where the Reynolds stress is modeled as:

Oxj p Oxi

ov, out)_ 2
-u ui = + Ox, -5k6 i "

From dimensional analysis, the eddy viscosity is:

_'T -_- C?-tt tl.

where u' and Y are the turbulent velocity scale and turbulent length scale.

(1)

(2)

(3)

2. THE MODEL EQUATIONS

In a two-equation model, two turbulent quantities(k - e, k - r, k - w or q - w) are used to

model the eddy viscosity. The turbulent transport equations of these quantities and the
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eddy viscosity modelsarewritten below. The model constantsand other modelparameters
may be found in the appendix.

2.1 The k-e Model

U T =(See Table 2)

Dk (9 _ Ok COUiDt -coxi [(v + )_ixi] + H - uiu-----fcox---].- e + D

De CO _, COe] _ Call 1 _COUi C2£ _Dt -coxi [(u + ) coxi Z uiuj COx--]- Z + E

WallBC: k---U=0, e=seetable2

2.2 The k-r Model

Dt

k
T _w

C

V T =C_,f_,kr

D k CO _kk Ok COU i kDt -COxi [(u + )_xi ] - uiu------fcoxj r

Dr CO Or]_ 2 I] T )COT COT-cox_[(v + _)Oxi 7 (v + a,.2 C&c,Ox_

2 _ Ok 07" _ r COUi+ -_(" + ) cox,o_ + (cl -.,-_.--- 1) k u'ua COzj
+ (c_A- I)

WallBC:k=U=7"=O

(4a)

(5a)

(6a)

(4b)

(sb)

(6b)

2.3 The k-w Model

c
o3--

c.k
k

VT _--
O3

Dk CO

Dt Oxi

Do3 CO

Dt coxi

Ok] _ cou_[(v + _)Oz_ _J 0_

YT ) COO3 ] ¢0 COU i

1

a_,_= _(ui,j - ui,_)

--- C_kw

WallBC: k=U=0, o3-_

.__ _ C2o3 2 _ C2C3w(2_i,j_j,i)½

(4c)

(5c)

(6c)
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2.4 The q-w Model

c

w=-_, q= vrk

q2

uT =C_,ft_ w

Dq 0 v T Oq uiuj OUi qw

Dt [(" +  )Tx, ] 2q 0xj 2

o o,,,]
Dt -Oxi [(u + a_ Oxi - C'C"(-_xj +

Wall BC: k = U = 0, 0_____= 0
Oy

ouj.) -
oxj

(4d)

(5d)

(6d)

3. MODEL TESTING

The• momentum, continuity, Reynolds stress, eddy viscosity and turbulent transport equa-

tions (Equations 1-6) are solved simultaneously in a numerical code. The numerical scheme

is based on GENMIX, a parabolic code developed by Patanker and Spaulding 13. The tur-

bulent transport equations and momentum equation are solved by a space marching finite

difference method obtained by integrating over control volumes.

Two dimensional channel flow calculations were made at Re,- = 180 and Re_ = 395. These

cases were compared with DNS data of Kim et al4. Calculations for the two- dimensional

flat plate boundary layer flow at Reo = 1410 were compared with DNS data of Spalart 12.

Some flat plate boundary layer comparisons were made between experimental data of

Klebanofl _ at Reo = 7700 and solutions of various models.

Results from channel flow at Rer = 180 and Re_. = 395 appear in Figures 1-6 and Figures

7-12, respectively. Results from flat plate boundary layer flow appear in Figures 13-24.

An important criterion for two-equation model comparisons is not only how well the model

predicts mean velocity and shear stress, but also the turbulent kinetic energy axld dissipa-

tion (or specific dissipation) rate. These predictions should provide appropriate turbulent

velocity and length scales so that the model can be applied to more complex flows for which

a simple mixing length model often fails. Some researchers maintain that it is not critical

that the turbulent kinetic energy and the turbulent length scale are predicted with great

accuracy. However, one may imagine that a two-equation model making unreasonable tur-

bulent velocity and length scale predictions would be very questionable when applied to

more general flows. A model which accurately predicts the shear stress and mean velocity

does not imply that it has correctly modeled the turbulent kinetic energy and length scale.

In fact, if the turbulent kinetic energy is incorrect, then the length scale must also be

incorrect to compensate for the error in the turbulent kinetic energy. For this case, two

wrongs are making a right. This warrants some caution when computing flows for other

geometries.
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The comparisons made in this study are only for rather simple flows. However, We think

they are important. Because if a model does not correctly predict a simple flow, it can-

not, in general, be expected to correctly model a more complicated flow. Although the

comparisons may be highly subjective, it is clear that the JL, LS, WI1 and WI2 models

underpredict the near wall turbulent kinetic energy compared to the other models.

The standard k - e model has been proven to provide good results in the high Reynolds

number range. It is therefore attractive for a near wall k - e turbulence model to approach

the standard k - e model away from the wall. The LB, LS and YS models are the only

k - e models in this study which possess this characteristic.

Because the boundary layer and channel flows are self-similar, the solutions should be

independent of the initial conditions. However, some of the models (SAA, Co, and LB) have

difficulty when the initial conditions contain large gradients. The Co Model is particularly

dependent on the initial conditions. Even slight perturbations to the initial conditions will

yield noticeably different solutions with this model.

JL, LS, WI1 and WI2 are the only models which do not contain y+. Damping functions

which contain y+ are not desirable because y+ is erroneous near flow separations and not

well defined near complicated geometries. Unfortunately, these are the same models which

poorly predict the near wall turbulent quantities.

The Wilcox models (WI1 and WI2) suffer from a numerically awkward boundary condition

for w at the wall:

6u y+w_ _ as -+0

We cannot define w at y+ = 0. We have tried two ways to approximate w as y+ approaches

0. First, we chose a large number for w_u and, second, we used an asymptotic wwau =
6u

c2y_-. Test cases showed that the solution does not converge as WwaU _ c_ or y+ --* 0 for
either model. In addition, both Wilcox models underpredict the turbulent kinetic energy

peak value for both boundary layer and channel flows.

4. CONCLUSION

In our calculations, k - e models such as Ch, NT, Sh and YS were robust and also gave the

best predictions of overall turbulent quantities. However they all contain an undesirable

y+ in their damping function.

To explore the capabilities as well as the deficiencies of these models, further testing of

these models in more complex flows, such as, flows with adverse pressure gradients is
needed.



APPENDIX: Model Parameters and Damping Functions

Table 1 : k - e Model Parameters

Model

Ch

Sh

LB

NH

H

0

NT 0

JL 0

LS 0

MK 0

YS

D
2vk
W

0

0

_. rov_2

0

-2.(@)
0

E

2Ve exp(--.5y+ ).72

VVT( 0" U "_2

0

0 2 U "_2
.t/T(1 -- fu )( og_":

0
L,

2UUT(-_,r_)2

Table 2 : k - e Model Parameters

Model

Ch k
f

kSh

LB e k_

NH

NT

JL c

LS ¢

MK e

k

k

k

f.

k

k

Tt VT

k_
c,.f,, b
Cj. 7-

k _
C.L T

k _
C _,f . 7

C. L k_:

cj. _
c.f.

-'p

Cgf. T

YS e 7+(- CufukT t

BCew

0

b' 02 k

. O_k

0

p O_k

0

_, O_k



Table 3 : k - e Model Parameters

Model

Ch

Sh

LB

NH

NT

JL

LS

CtL

.09

.O9

.O9

.O9

.O9

.O9

.O9

c1
1.35

1.45

1.44

1.45

1.45

1.45

1.44

C2

1.8

2.0

1.92

1.9

1.9

2.0

1.92

(7 k

1.0

1.3

1.0

1.0

1.4

1.0

1.0

(7 C

1.3
1.3

1.3

1.3

1.3

1.3

1.3

MK .09 1.4 1.8 1.4 1.3

YS .09 1.44 1.92 1.0 1.3

Table 4 : k - e Damping Functions

Model

Ch

Sh

LB

A
1 - exp(-.Oll5y +)

1 -- exp(--.OO6y + - 4e-4y+2+

2.5e-6y+3 _ 4e-gy+4)
20.5_(1 - e-'°'_sn_)2(1 + n, J

fl

.05 3

1+(_)

1 -.22exp(--_)

1- e_p(-n_)
NH

NT

JL

LS

[1- ezp(- _)] _

[1- eap(- 2_d)]2(1 + _)

--2.5
e_p(_)

--3.4
exp( 0 +R--4_o)_)

1- .3e_p(-n,_)
(1 - .3exp(-(R--'-'_2'V_6.5 / ]]

(1- exp(_))2
1 - .3exp(-n_)
1 - .3ezp(-R_)

MK

YS

(1 + _)(1-exp(- 7_o) )

1 - exp(-.OO4y + - 5e-5y+2+

2e-6y+3 _ 8e-Sy+ 4)

1

R 2

(1 - _exp(- "3-_-))

(1- ex;(,n))2
i 2:22e_p(__A_

36 J

Table 5 : k - w Model Parameters

Model C. C1

WI1 .09

WI2 .O9 _[c_(1+ ,/c_.)- ¼_24c.1 o 2_o _o
_ _ 2.0 2.0
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Table 6 : k - r Model Parameters

Model ak a_l a_ C_ C2

SAA 1.36 1.36 1.36 1.44 1.s311-
C#

.09

Model

SAA

Table 7 : k - 7- Model Damping Functions

• 3.45 x[1 -- +

Table 8 : q-w Model Parameters

Model aq a,,,
Co 1.0 1.3

C_

.09

C1 C2

.405j , + .045 .92
f.

1 - exp(--.OO65Rk)

V/-k_ y+ = _ Rt k2Rk = , ,, = -ff'_e
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